Adaptive radial basis function methods for time dependent partial differential equations
نویسندگان
چکیده
منابع مشابه
Adaptive Radial Basis Function Methods for Time Dependent Partial Differential Equations
Radial basis function (RBF) methods have shown the potential to be a universal grid free method for the numerical solution of partial differential equations. Both global and compactly supported basis functions may be used in the methods to achieve a higher order of accuracy. In this paper, we take advantage of the grid free property of the methods and use an adaptive algorithm to choose the loc...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملMultiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations
ii Preface Radial Basis Function (RBF) methods have become the primary tool for interpolating multidimensional scattered data. RBF methods also have become important tools for solving Partial Differential Equations (PDEs) in complexly shaped domains. Classical methods for the numerical solution of PDEs (finite difference, finite element, finite volume, and pseudospectral methods) are based on p...
متن کاملDomain decomposition by radial basis functions for time dependent partial differential equations
In the last years, there has been an increased investigation of efficient algorithms to solve problems of great scale. The main restriction of the traditional methods, like finite difference methods and finite element methods, is the mesh generation. In this work, we investigate the overlapping domain decomposition method applied to time dependent partial differential equations with unsymmetric...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2005
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2004.07.004